日记网 加入收藏  -  设为首页
您的位置:日记网 > 教育知识 > 正文

目录

1,什么是有机合成化学?

什么是有机合成化学?

从1853 年贝特罗首次用甘油和脂肪酸合成了天然脂肪(硬脂)的类似物开始,到现在有机合成化学的历史已经有150多年,其发展在当代达到了空前的水平。每约20年,就有新的进展把这一领域推到一个新的水平。在1940 年左右,有机化学的合成活动大多还是按照20世纪初流行方式进行,其主要差别只是研究者的人数大大增加了,合成方法的样式多了,仪器设备得到了改进。解决合成问题主要是以经验为依据,并且目标十分有限,想要进行大步骤合成的人极为罕见。由于需要熟悉大量的特殊化合物和特殊反应,有机化学家们倾向于从事糖化学、生物碱、染料、萜烯、蛋白质、脂肪、甾族化合物或某一类似领域的研究,而极少对整个化学领域感兴趣。 自 1940 年以后,理论原则开始被用来规划合成问题,仪器被用来控制反应历程中的各步反应,这已使合成有机化学的状况发生了巨大变化。有关天然产物的化学在推动这一变化方面起了极为重要的作用。生物化学家们对维生素和酶发生了兴趣,药物工业对抗生素、激素和萝芙藤生物碱等一些天然物质发生了兴趣,这些都刺激了对具有多个反应中心的复杂分子的合成的研究。 有机合成化学的发展,经历了以下几个时期: 早期 像武兹反应、威廉逊反应、帕金反应、罗森反应、霍夫曼反应、斯克劳普反应、弗瑞兰德反应、雅各布森反应、诺尔反应、米切尔反应那样,一些完全确立的“人名”反应继续被广泛地使用着的同时,人们不断提出扩大它们的应用的改进方法。由于新反应的发现使得过去的目的更易于达到,使得新的合成能着手进行,格林亚试剂是1899年被提出的,但直到20世纪它才得到了充分重视。格林亚本人将这个反应扩大到各种化合物的制备方面,而无机化学家们也利用了这个反应。 因为格林亚试剂易与含有可取代的氢或活泼氢的物质反应,比如水、醇、氨、HCl,所以它在分析上被用来测定这种可取代的氢。这一应用是首先由圣彼得堡的 L.丘加也夫(1872—1922年)提出的,后来他的学生采列维季诺夫进一步发展了它。 20世纪初采用的其他反应有布沃尔特的醛合成、布沙尔的酸变胺的反应、乌尔曼的用铜将芳香卤化物转变成烃的反应以及乌尔曼的将简单环连接成更复杂的稠合环的缩合反应。所有这些反应都可用于芳香族化合物,而这些反应反映了人们在20世纪头十年里对染料化学的密切注意。同一时期出现的布沃尔特—勃兰克还原提供了一种将酸转变成相应的醇的方法。这一还原反应是钠和乙醇在该酸的酯存在下发生的还原反应。克莱门生反应则通过使用在酸中的锌汞齐将羰基转变成亚甲基。达金反应使用了碱液中的过氧化氢,从而将芳香醛转变成了酚。 第一次世界大战期间,除了罗森蒙德还原反应外,合成化学领域没有出现什么新活动。在这一还原反应中,酰基是通过将氢引入一个含钯催化剂的溶液里而转变成醛基的。将有机酸链长缩短一个单位的巴比埃—维兰德降解反应是1913年由巴比埃提出,并在1926 年由维兰德加以改进。另一个意义重大的反应是 1928 年,由O.迪尔斯(1876—1934年)和 K.奥尔德(1902—1958年)在基尔发现的。他们观察到,丁烯与马来酸酐剧烈反应,可以定量地得到一种六元环化合物顺-△4-四氢化酞酸酐。 在较早的时候,梅尔魏因是梅尔魏因—庞道尔夫—维尔利还原反应的独立发现者之一,该反应是在烷醇铝存在条件下将羰基化合物还原成醇的反应。这种氧化反应最适合将仲醇转变成酮,尽管它多少也被用在伯醇的氧化上。 催化加氢对合成工作及对解释理论问题都是一门有用的技术。20世纪初,萨巴蒂埃和森德伦斯最早发展了它,不久它就被工业生产上所采用。直到第一次世界大战结束前,需要提供适当高压的要求推迟了氢化技术在有机研究中的广泛应用。到20世纪30年代,它才被应用于许多重要工作。 氢化反应所用的适宜催化剂的发展也很缓慢。帕尔在20世纪初提出了一种制备铂催化剂的方法。其他细粹金属,特别是镍,也被利用上了。不过制备催化剂的方法却没有标准化,故而其结果使人失望。1927 年 M.拉尼获得专利的一种镍-铝合金被广泛用来制备镍催化剂,其中铝是用氢氧化钠将其溶解后分离出去的。伊利诺斯的亚当斯及其同事将金属氧化物还原,以用作催化剂。威斯康星的 H.阿德金斯(1892—1949年)及其同事最先将亚铬酸铜研制成一种有效的催化剂。 中期 有机合成的现代时期开始于20世纪40年代。尽管之前的十年已经完成了某些困难的合成,比如,R.R.威廉斯和 J.K.克莱因完成的硫胺合成;P.卡勒尔和 R.库恩各自独立完成的核黄素合成;S.A.哈里斯和 K.福克斯以及库恩独立完成的吡哆醇合成;T.赖希斯坦和库恩各自独立完成的抗坏血酸合成;三个实验室——卡勒尔实验室、A.托德实验室和L.I.史密斯实验室完成的α-生育酚合成;E.A.多伊西实验室和 L.菲塞尔实验室完成的止血维生素 K 合成;W.巴赫曼、J.W.科尔和 A.L.维尔兹完成的马萘雌酮合成;福克斯及库恩和 H.维兰德完成的泛酸合成,但这些合成与下面的全合成相比,就有些失色了。 这些全合成有R.B.伍德沃德和 W.E.多林成功进行的奎宁的全合成,L.H.萨雷特的可的松合成,伍德沃德的棒曲霉素和马钱子碱合成,M.盖茨和 D.金斯贝格的吗啡合成,福克斯、A.格雷斯纳尔和苏巴罗夫在默克实验室进行的维生素 H 合成,C.W.沃勒的叶酸合成,伍德沃德和 R.鲁宾逊独立完成的胆固醇和维生素 合成,H.英霍芬和卡勒尔的β?胡萝卜素合成,O.艾斯勒的维生素 A 合成,F.桑格的胰岛素合成,以及伍德沃德和马丁·斯特雷尔的叶绿素α合成。 这些合成的显著特点就是它们能在这些化合物的结构确立后不久就迅速完成。这些合成显示了新的观点在有机化学领域所具有的力量。因为在做实验以前,常常要对各步反应进行理论上的设计。这些合成成就反映了20世纪中叶科学的特点——大大依赖于思想观点的交流。狭隘研究专业的时代已经让位于综合研究问题的时代。 一项既在有机研究中,也在工业生产上具有价值的特别重要的合成发展就是对微生物的利用。霉菌和其他生物体被广泛地用来生产抗生素。微生物产生了抗生素,但是关于其中间过程人们却不太了解。然而,微生物已被用于进行一系列合成操作平菇绿霉菌中的某一步反应。它们特别适合于这种应用,因为它们可以进行立体有择反应,若以纯化学合成来反应,则会产生异构体的混合物。维生素C、1?麻黄碱、吡哆醛、吡哆胺、某些蒽醌和某些青霉素已可用适当的微生物来合成了,这种方法在甾族化合物领域中也已被采用了。 近期 具有高水平的有机合成研究小组的数目,和他们所取得的重大发现成果,以及该领域对年轻有为科学家的吸引力,远远超过了20世纪60年代。化学合成方法学包括一些新的合成过程、重大合成战略和有较高选择性的试剂、催化剂。亲和层析和多功能液相色谱等对有机物质分离和纯化方法的改进,这将大大加速有机合成研究,从而可能解决许多更复杂的问题。 物理仪器(X 线晶体衍射、核磁共振、质谱)和计算机等在精确测定结构中的应用,大大加快了新的人工合成的生物活性分子的发现和鉴定,促进了我们对生物活性分子功能的认识。这表明计算机已成为有机合成化学家的重要工具。计算机将不仅仅用于计算,还将用于多种问题的解决和相互教授。用计算机辅助模型对合成进行分析,将成为化学的常规工具。

2,有机化学中的"多样性导向有机合成"的概念是什么?

多样性导向合成(diversity-oriented synthesis , DOS) 概念最初由Schreiber于2000 年提出, 它以一种“高通量”(high-throughput)的方式产生“类天然产物”(natural product-like) 的化合物。其合成是从单一的起始原料出发以简便易行的方法合成结构多样、构造复杂的化合物集合体,再对它们进行生物学筛选。它的合成策略遵循正向合成分析法(forward-synthetic analysis),在合成过程中尽量引入多样化的官能团,构建不同的分子骨架,并希望最终建立的小分子化合物库涵盖尽可能多的化学多样性(包括密集的手性官能团、丰富的立体化学和三维结构、以及多样性的化合物骨架)。DOS 的筛选目标并不是针对某一类特定的生物靶标,而是为各种靶标寻找新的配体,进而分析细胞和生物体的功能,发现大分子相互作用的“接线图”。

3,有机合成化学

这个问题怎么跟你说了,我本身这些课都学了,仔细想了想,其实跨度不大。
如果就考研而言,其实就是几本复习书的问题,跟你考上以后没多大关系,考上会重新学习一些新的知识,顶多就跟复试有点关系(但这也要看你选得导师你研究方向)。
生物化学真正的内容跟有机合成隔好远,就像高中时,化学跟生物一样,生物化学它主要研究一些化学物质在生物体内的一些代谢过程中是如何转化(特别是有关一些酶),以及各种营养物质的化学本质到底属于那一类,有时可能会涉及一些药物在代谢方面的生化作用。
但有机合成从简单的有机反应到复杂的的合成,他主要倾向于中间官能团的变化,各种结构对化学性质的影响(如共振,共轭),以及分离提纯鉴别手段,涉及药物名称,但对药物的生化作用并不深究。
就如合成糖类,蛋白质等,我们首先会确定产物结构,官能团特性来确定合成路劲,但生物化学里主要讲在代谢过程中的合成路径,两者是有区别的。
当然无可否认现在的制药,都会把正两者相结合,即生物制药,通过研究人体内各种代谢途径,运用有机合成手段来合成药物。但这些都是你以后的学习方向,如果就考研而言,你的报考专业选择有机合成,他本质其实就是有机化学,而这些在大学前两年的基础化学学习过程中都有涉及。
没什么好迷茫,有信心,有毅力,都不难!

4,在化学当中,有机合成是怎么样的,有机合成路线设计的一般程序是什么?

在化学当中,有机合成是从较简单的化合物或单质经化学反应合成有机物的过程。有时也包括从复杂原料降解为较简单化合物的过程。 合成路线的设计方法,一般有两种方法:"两头凑法"(类比分析法)“直推法”和“逆推法” 1. 正推法:从确定的某种原料分子开始,逐步经过碳链的连接和官能团的安装来完成。首先要比较 原料分子和目标化合物分子在 结构上的异同,包括 官能团和 碳骨架两个方面的异同;然后,设计由 原料分子转向目标化合物 的合成路线。其思维程序为“原料→中间产物→产品” 2. 逆推法:采取从产物逆推 ,设计合理的合成路线的方法。在逆推过程中,需要逆向寻找能顺利合成目标化合物的中间有机化合物,直至选出合适的起始原料。 其思维程序为“产品→中间产物→原料”。 "逆推法"一般程序是: (1)首先确定所要合成的有机物属于何类型,以及题中所给定的条件与所要合成的有机物之间的关系。 (2)以题中要求的最终产物为起点,考虑这一有机物如何从另一有机物甲经过一步反应而制得。如果甲不是所给的已知原料,再进一步考虑甲又是如何从另一有机物乙经一步反应而制得,一直推导到题目中所给定的原料为终点,同时结合题中给定的信息。 (3)在合成某一产物时,可能会产生多种不同的方法和途径,应当在兼顾原料省、产率高的前提下选择最合理、最简单的方法和途径。 类比分析法:其思维程序为“比较题目所给知识原型→找出原料与合成物质的 内在联系→确定中间产物→产品”。 望采纳~! 谢谢!